INDEX | What is HYBRAR™ ?····· | | |---|---------| | Application Examples of HYBRAR™ ······ | 2 | | HYBRAR™ Grades ····· | 3~4 | | HYBRAR™ Properties······ | 5~6 | | HYBRAR™ Applications ~Polymer Blends~····· | ····7~8 | | HYBRAR™ Applications ~PP / HYBRAR™ (Hydrogenated) Blends~······ | 9~10 | | HVRRAR™ Applications accurat Forms | 10 | ## What is HYBRAR™? HYBRAR™ is a styrenic block copolymer having a vinyl-polydiene soft block developed by Kuraray Co., Ltd. using its unique isoprene technology. HYBRARTM is a series of thermoplastic rubbers which offer high vibration damping properties due to its glass transition temperature (Tg) near room temperature. This opens HYBRARTM for use in damping applications that are not favorable with Kuraray's SEPTONTM product series. Hydrogenated HYBRAR[™] grades, the 7000 series, exhibit excellent miscibility with polypropylene. As a result, hydrogenated HYBRAR[™] /PP blends have excellent transparency. Unlike flexible PVC, they offer good flexibility and mechanical properties without the need for plasticizers while being friendlier to the environment. HYBRAR[™] can be processed in various shapes including film, sheet and tube. Similarly to many rubbers, HYBRAR™ can be vulcanized. Cured HYBRAR™ foams exhibit low compression sets and good elasticity. #### Molecular Structure Model Vinyl-bond rich SIS (5127, 5125) $$s - \left(\begin{array}{c} c - c \\ \end{array}\right)_{m} s$$ Vinyl-bond rich SEPS (7125) $$s - (c - c)_{m} s$$ Vinyl-bond rich SEEPS (7311) I : Polyisoprene EP: Hydrogenated Polyisoprene EEP: Hydrogenated Poly(isoprene/butadiene) # **Application Examples of HYBRAR™** ## **HYBRAR™** Grades Tested by KURARAY CO., LTD. | | | | Styrene | yrene Peak Glass Specific Hardness Tensile Property | | | | ne Peak Glass Specific Hardness Tensile Property MFR | | | MFR Solution Viscosity | | | cosity | Physical | | | |--------------------------|---------------|--------------------------|---------|---|---|-------------|-------------|--|-----------------|---------------------|------------------------|------------------|------------------|---------|----------|---------|--------| | | | | Content | Temp. of Tan δ | Transition Temp. | Gravity | | 100%
Modulus | 300%
Modulus | Tensile
Strength | Elongation | 190°C,
2.16kg | 230°C,
2.16kg | 15wt% | 20wt% | 30wt% | Form | | | Grade | Туре | (wt%) | (℃) | (°C) | | (Type A) | (MPa) | (MPa) | (MPa) | (%) | (g/10min) | (g/10min) | (mPa·s) | (mPa·s) | (mPa·s) | | | Unhydrogenated
Grades | 5127 | Vinyl-bond rich
SIS | 20 | 20 | 8 | 0.94 | 84 | 2.8 | 4.7 | 12.4 | 730 | 5 | _ | _ | _ | 540 | Pellet | | Unhydro
Gra | 5125 | Vinyl-bond rich
SIS | 20 | -3 | -13 | 0.94 | 60 | 1.6 | 2.5 | 8.8 | 730 | 4 | | _ | 100 | 650 | Pellet | | enated
des | 7125 | Vinyl-bond rich
SEPS | 20 | -5 | -15 | 0.90 | 64 | 1.7 | 2.7 | 7.1 | 680 | 0.7 | 4 | _ | 55 | 350 | Pellet | | Hydrogenated
Grades | 7311 | Vinyl-bond rich
SEEPS | 12 | -17 | -32 | 0.89 | 41 | 0.6 | 0.9 | 6.3 | 1050 | 0.5 | 2 | 90 | 240 | | Pellet | | N | 1easui
Met | rement
hod | _ | | DSC
(Temp.
increase
by
10°C/min.) | ISO
1183 | ISO
7619 | ISO 37 | | ISO | 1133 | Tolu | ene sol
30°C | ution | | | | Unit Conversion: 1MPa=10.20 kgf/cm² 1mPa·s=1cPs - 1) Precautions should be taken in handling and storing. Refer to the appropriate Material Safety Data Sheet for further safety information. - 2) In using HYBRAR™, please confirm related law and regulations, and examine its safety and suitability for the application. - 3) For Medical, Healthcare and Food Contact applications, please contact your SEPTON™ representative for specific recommendations. HYBRAR™ should not be used in any devices or materials intended for implantation in the human body. | Both(Unhydrogenated,Hydrogenated) | Hydrogenated | |---|--| | , | , , | | High vibration damping
at room temperature | Excellent miscibility with polypropylene | | High affinity to polyolefins and styrenics | Excellent heat and weather resistance | | Can be formed | | | Curable like vulcanized rubbers | | | Rubber like elasticity | | ^{*} The figures, graphs, and charts in this booklet are representative ones measured by KURARAY, and those are without guarantee because each conditions of use are beyond Kuraray's control. ## Temperature Dependence of Tan δ ## HYBRAR™ Properties Tested by KURARAY CO., LTD. ## Dynamic Viscoelastic Behavior Test Conditions: HYBRAR™ 7125 Dynamic Rheometer "REOVIBRON DDV-III" Tensile mode Heating Rate 3°C/min. Frequency 11Hz ### Capillary Flow Test Test Conditions : HYBRAR™ 7125 Capillary Rheometer "CAPIRO GRAPH" #### **Heat Resistance** Test Conditions: HYBRAR™ 7125 Thermo-balance Heat Degradation Heating Rate 10°C/min. Nitrogen Atmosphere ## **Electrical Properties** | Item | | | |----------------------------------|--------------------|----------------------| | Specific Inductive | 10³ Hz | 1.5 | | Capacity | 10⁴ Hz | 1.5 | | | 10⁵ Hz | 1.5 | | | 10 ⁶ Hz | 1.5 | | Dielectric Loss | 10³ Hz | _ | | Tangent | 10⁴ Hz | 0.0015 | | | 10⁵ Hz | 0.0011 | | | 10 ⁶ Hz | 0.0012 | | Dielectric Breakdowi
Strength | n
kV/mm | 36.9 | | Volume Resistivity | Ω·cm | 2.0×10 ¹⁷ | Test Conditions: HYBRAR™ 7125 Specific Inductive Capacity: Electrode indirect method (Vacancy mode) Dielectric Breakdown Strength: JIS K-6911 Voltage Rising Rate 2kV/sec Volume Resistivity: Measured 1min. after applying DC 500V (at 20°C) ### **Combustion Test** | Combustion Gas | | Amount Formed | Detection Limit | |----------------------------------|--------|---------------|-----------------| | SOx(reduced to SO ₂) | (mg/g) | not detected | 0.1 | | NOx(reduced to NO ₂) | (mg/g) | not detected | 0.5 | | HCI | (mg/g) | not detected | 0.1 | | HCN | (mg/g) | not detected | 0.05 | | NH₃ | (mg/g) | not detected | 0.1 | | СО | (mg/g) | 140 | 10 | | CO ₂ | (mg/g) | 350 | 10 | | Gross Calorific Value | (J/g) | 45000 | | Test Conditions: HYBRAR™ 7125 Combustion gas JIS K-7217 (Combustion condition A) Gross Calorific Value JIS M8814 Calorimeter ## Solubility Data | Soluble | Partially Soluble | Insoluble | |----------------------|---------------------|--------------------| | Petroleum Benzine | Ethyl Acetate | Methanol | | Toluene | Methyl Ethyl Ketone | Ethanol | | Hexane | | Acetone | | Cyclohexane | | Water | | Chloroform | | Dimethyl Formamide | | Carbon Tetrachloride | | | | Carbon Disulfide | | | | Tetrahydrofuran | | | | 1 | | | Test Conditions: Test Conditions - HYBRAR™ 7125 Put 10wt% of polymer into each solvent and vibrate for two days at the room temperature. The solubility is judged by the appearance. ## HYBRAR™ Applications ~Polymer Blends~ ### (1) Plastic/HYBRAR™ Blend HYBRAR™ can be blended with various plastics to produce materials which exhibit excellent vibration damping properties. Some blends using HYBRAR™ 5127 and their physical properties are depicted below: #### Polystyrene/HYBRAR™ Blend | | | | | Te | sted by KURARAY CO.,L | |-----------------------|--------------|-------|-------|-------|-----------------------| | | (wt %) | 1 | 2 | 3 | 4 | | Formulation | | | | | | | Polystyrene | | 100 | 90 | 85 | 80 | | HYBRAR™5127 | | | 10 | 15 | 20 | | Physical Properties | | | | | | | Evaluation of Dampin | g Properties | | | | | | Tan δ Loss Factor | (0°C) | 0.033 | 0.044 | 0.047 | 0.049 | | | (25°C) | 0.035 | 0.051 | 0.075 | 0.115 | | | (40°C) | 0.037 | 0.045 | 0.063 | 0.094 | | Loss Factor (Degree | | 0.016 | 0.023 | 0.040 | 0.068 | | Mechanical Properties | | | | | | | Hardness | (Type-D) | 83 | 80 | 76 | 74 | | Tensile Modulus | (MPa) | 2600 | 2300 | 2200 | 1900 | | Tensile Strength | (MPa) | 49 | 51 | 47 | 43 | | Elongation | (%) | 13 | 18 | 21 | 17 | | Flexural Modulus | (MPa) | 2600 | 2300 | 2100 | 1700 | | Flexural Strength | (MPa) | 74 | 34 | 28 | 23 | #### Conditions Blended with Twin Screw Extruder at 200°C Test samples molded with Injection Molder. (Cylinder at 200°C, Mold at 60°C) Evaluation of Damping Properties:Tanδ measured with Rheovibron (Dynamic Viscoelastometer, Orientec) at 110Hz Loss Factor(Degree of Damping) measured by resonance method with a cantilever beam The vibration damping behavior of the PS/5127 blend, when struck by a steel ball, is shown below. ### (2) HYBRAR™ based filler compounds Damping compounds can be produced from the combination of HYBRAR™ and inorganic fillers such as mica, graphite, calcium carbonate,etc. ## (3) SEPTON™ and HYBRAR™ combination compound HYBRAR[™] can be blended with olefins and/or SEPTON[™] to produce soft compounds which exhibit excellent vibration damping properties. Some compounds using HYBRAR[™] 5127 and their physical properties are depicted below: | | | | Teste | d by KURARAY CO.,LTD. | |---------------------|-------------------|-----|-------|-----------------------| | | (parts by weight) | 1 | 2 | 3 | | Formulation | | | | | | SEPTON™ 4055 | | 100 | 100 | 100 | | HYBRAR™5127 | | | 100 | 100 | | Process Oil | | 180 | 100 | 60 | | Polypropylene | | 50 | 40 | 40 | | Physical Properties | | | | | | Resilience | (%) | 40 | 17 | 12 | | Hardness | (Type A) | 48 | 51 | 61 | | Tensile Modulus | (MPa) | 0.8 | 1 | 1.4 | | Tensile Strength | (MPa) | 9.3 | 10.3 | 13.9 | | Elongation | (%) | 990 | 850 | 800 | | Compression Set | | | | | | 25℃×22h | (%) | | 15 | 17 | | 70°C×22h | (%) | 41 | | 59 | | MFR (230°C, 21N) | (g/10min) | 5 | 17 | 6 | Mixing Condition: Twin Screw Extruder at 210℃ Molding Condition: Injection Molding (Cylinder at 210 $^{\circ}\! C$, Mold at 50 $^{\circ}\! C)$ Resilience: ISO 4662 Lupke Type Rebound Resilience Tester =Hr/Ho x100 (Hr: Rebound Height, Ho: Fall Height) Red: HYBRAR™ based compound Blue: Common rubber based compound ## **HYBRAR™** Applications ## ~PP / HYBRAR™ (Hydrogenated) Blends~ Hydrogenated HYBRAR™ grades (HYBRAR™ 7125 and HYBRAR™ 7311) exhibit excellent miscibility with polypropylene. Unlike flexible PVC, they offer good flexibility and mechanical properties without the need for plasticizers while being friendlier to the environment. HYBRAR[™] 7311 has a lower styrene content and a lower glass transition temperature than HYBRAR[™] 7125. As a result, PP/7311 blends are more flexible at room temperature than PP/7125 blends and offer better impact properties at lower temperatures. #### PP/7125, PP/7311 Blends | Tested by | KURARAY | CO.,LTD. | |-----------|---------|----------| |-----------|---------|----------| | (part | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | |--|----------|------|----------|----------|----------|----------|----------|----------| | Formulation Polypropylene (Random) HYBRAR™7125 HYBRAR™7311 | | 100 | 90
10 | 80
20 | 70
30 | 90
10 | 80
20 | 70
30 | | Physical Properties | (Type A) | 98 | 98 | 96 | 98 | 94 | 96 | 94 | | Hardness | (Type D) | 63 | 55 | 46 | 42 | 54 | 44 | 35 | | Young's Modulus Tensile Strength | (MPa) | 490 | 480 | 250 | 140 | 380 | 140 | 90 | | | (MPa) | 37 | 35 | 30 | 30 | 34 | 30 | 28 | | Elongation Impact strength | (%) | 1400 | 1400 | 1400 | 1600 | 1400 | 1600 | 1700 | | Notched Izod at-20°C | (J/m) | 30 | 32 | 36 | 38 | 45 | 320 | 860 | | Haze (1mm thick film) | (%) | 52 | 49 | 30 | 19 | 52 | 33 | 27 | ### Mono Layer (Cast Film) Tested by KURARAY CO.,LTD. | (w | /t%) | 1 | 1 | 2 | 2 | ; | 3 | | 4 | |--|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | Formulation
Polypropylene (Random)
HYBRAR™7125 | | 90
10 | | 85
15 | | 80
20 | | 70
30 | | | Young's Modulus (N | //Pa)
//Pa)
(%) | MD
38
240
1090 | TD
35
230
1130 | MD
35
200
1000 | TD
38
220
1200 | MD
37
140
1270 | TD
36
150
1170 | MD
38
110
1150 | TD
30
100
1090 | | Optical Properties
Haze | (%) | 3.9 | | 2.8 | | 0.9 | | 0 | 1.4 | (Thickness=50 μ m) # Comparison of PP/ HYBRAR™ (Hydrogenated) blends and Flexible PVC | | PP / HYBRAR™
(Hydrogenated)
Blend | Soft PVC | |----------------------|---|----------| | Halogen Free | 0 | × | | Plasticizer Free | 0 | × | | Low Specific Gravity | 0 | × | | Transparency | 0 | 0 | | Flexibility | 0 | 0 | | Heat Resistance | 0 | 0 | | Weather Resistance | 0 | 0 | (○Good ×Not Good) # Dynamic Viscoelastic Behavior for PP / HYBRAR™ 7125 In case of PP/HYBRARTM 7125=30/70 formulation (——), it shows very similar dynamic viscoelastic behavior to Soft PVC shown as above, and so it has very similar feeling to Soft PVC (——) such as unique slow-recovery property. ## HYBRAR™ Applications ~Cured Foam~ Damping foams can be made with HYBRAR™ by using foaming and curing agents. An example is shown below. # Comparison data between conventional EVA foam and HYBRAR™ based foam | | | Tested by KURARAY CO.,LTD. | | |------------------------------------|----------------|----------------------------|-------| | (pa | rts by weight) | 1 | 2 | | Formulation | | | | | EVA (VA Content: 19wt%) | | 100 | 50 | | HYBRAR™5127 | | | 50 | | Curing Agent | | 8.0 | 0.175 | | Foaming Agent | | 3 | 3 | | ZnO | | 2 | 2 | | Stearic Acid | | 1 | 1 | | TiO2 | | 4 | 4 | | Physical Properties | | | | | Specific Gravity | | 0.17 | 0.18 | | Hardness (ASTM D2240, TypeC, 14°C) | | 65 | 66 | | Compression Set | (%) | 65 | 48 | | Resilience | (%) | 40 | 19 | | Tensile Strength | (MPa) | 2.1 | 2.1 | | Elongation | (%) | 230 | 230 | | | | | | Mixing Condition: Kneader and Roll-mill at 100°C ~130°C Curing Condition: Press Molding at 145°C for 60min. with 14.7 MPa pressure #### KURARAY CO., LTD. :Ote Center Bildg., 1-1-3 Otemachi, Chiyoda-Ku, Tokyo 100-8115 PHONE: +81-3-6701-1601, FACSIMILE: +81-3-6701-1645 #### KURARAY AMERICA, INC. :11414 Choate Road, Pasadena, TX 77507 PHONE: +1-281-909-5850, FACSIMILE: +1-281-909-5851 #### KURARAY EUROPE GMBH :Building F821, Hoechst Industrial Park, 65926 Frankfurt am Main PHONE: +49-69-305-35850, FACSIMILE: +49-69-305-35650 http://www.septon.info/en http://www.kuraray.co.jp/en