

INDEX

What is HYBRAR™ ?·····	
Application Examples of HYBRAR™ ······	2
HYBRAR™ Grades ·····	3~4
HYBRAR™ Properties······	5~6
HYBRAR™ Applications ~Polymer Blends~·····	····7~8
HYBRAR™ Applications ~PP / HYBRAR™ (Hydrogenated) Blends~······	9~10
HVRRAR™ Applications accurat Forms	10

What is HYBRAR™?

HYBRAR™ is a styrenic block copolymer having a vinyl-polydiene soft block developed by Kuraray Co., Ltd. using its unique isoprene technology.

HYBRARTM is a series of thermoplastic rubbers which offer high vibration damping properties due to its glass transition temperature (Tg) near room temperature. This opens HYBRARTM for use in damping applications that are not favorable with Kuraray's SEPTONTM product series.

Hydrogenated HYBRAR[™] grades, the 7000 series, exhibit excellent miscibility with polypropylene. As a result, hydrogenated HYBRAR[™] /PP blends have excellent transparency. Unlike flexible PVC, they offer good flexibility and mechanical properties without the need for plasticizers while being friendlier to the environment. HYBRAR[™] can be processed in various shapes including film, sheet and tube.

Similarly to many rubbers, HYBRAR™ can be vulcanized. Cured HYBRAR™ foams exhibit low compression sets and good elasticity.

Molecular Structure Model

Vinyl-bond rich SIS (5127, 5125)

$$s - \left(\begin{array}{c} c - c \\ \end{array}\right)_{m} s$$

Vinyl-bond rich SEPS (7125)

$$s - (c - c)_{m} s$$

Vinyl-bond rich SEEPS (7311)

I : Polyisoprene

EP: Hydrogenated Polyisoprene

EEP: Hydrogenated Poly(isoprene/butadiene)

Application Examples of HYBRAR™

HYBRAR™ Grades

Tested by KURARAY CO., LTD.

			Styrene	yrene Peak Glass Specific Hardness Tensile Property				ne Peak Glass Specific Hardness Tensile Property MFR			MFR Solution Viscosity			cosity	Physical		
			Content	Temp. of Tan δ	Transition Temp.	Gravity		100% Modulus	300% Modulus	Tensile Strength	Elongation	190°C, 2.16kg	230°C, 2.16kg	15wt%	20wt%	30wt%	Form
	Grade	Туре	(wt%)	(℃)	(°C)		(Type A)	(MPa)	(MPa)	(MPa)	(%)	(g/10min)	(g/10min)	(mPa·s)	(mPa·s)	(mPa·s)	
Unhydrogenated Grades	5127	Vinyl-bond rich SIS	20	20	8	0.94	84	2.8	4.7	12.4	730	5	_	_	_	540	Pellet
Unhydro Gra	5125	Vinyl-bond rich SIS	20	-3	-13	0.94	60	1.6	2.5	8.8	730	4		_	100	650	Pellet
enated des	7125	Vinyl-bond rich SEPS	20	-5	-15	0.90	64	1.7	2.7	7.1	680	0.7	4	_	55	350	Pellet
Hydrogenated Grades	7311	Vinyl-bond rich SEEPS	12	-17	-32	0.89	41	0.6	0.9	6.3	1050	0.5	2	90	240		Pellet
N	1easui Met	rement hod	_		DSC (Temp. increase by 10°C/min.)	ISO 1183	ISO 7619	ISO 37		ISO	1133	Tolu	ene sol 30°C	ution			

Unit Conversion: 1MPa=10.20 kgf/cm²

1mPa·s=1cPs

- 1) Precautions should be taken in handling and storing. Refer to the appropriate Material Safety Data Sheet for further safety information.
- 2) In using HYBRAR™, please confirm related law and regulations, and examine its safety and suitability for the application.
- 3) For Medical, Healthcare and Food Contact applications, please contact your SEPTON™ representative for specific recommendations. HYBRAR™ should not be used in any devices or materials intended for implantation in the human body.

Both(Unhydrogenated,Hydrogenated)	Hydrogenated
, , , , , , , , , , , , , , , , , , , ,	, ,
High vibration damping at room temperature	Excellent miscibility with polypropylene
High affinity to polyolefins and styrenics	Excellent heat and weather resistance
Can be formed	
Curable like vulcanized rubbers	
Rubber like elasticity	

^{*} The figures, graphs, and charts in this booklet are representative ones measured by KURARAY, and those are without guarantee because each conditions of use are beyond Kuraray's control.

Temperature Dependence of Tan δ

HYBRAR™ Properties Tested by KURARAY CO., LTD.

Dynamic Viscoelastic Behavior

Test Conditions:
HYBRAR™ 7125
Dynamic Rheometer "REOVIBRON DDV-III" Tensile mode
Heating Rate 3°C/min.
Frequency 11Hz

Capillary Flow Test

Test Conditions : HYBRAR™ 7125 Capillary Rheometer "CAPIRO GRAPH"

Heat Resistance

Test Conditions: HYBRAR™ 7125 Thermo-balance Heat Degradation Heating Rate 10°C/min. Nitrogen Atmosphere

Electrical Properties

Item		
Specific Inductive	10³ Hz	1.5
Capacity	10⁴ Hz	1.5
	10⁵ Hz	1.5
	10 ⁶ Hz	1.5
Dielectric Loss	10³ Hz	_
Tangent	10⁴ Hz	0.0015
	10⁵ Hz	0.0011
	10 ⁶ Hz	0.0012
Dielectric Breakdowi Strength	n kV/mm	36.9
Volume Resistivity	Ω·cm	2.0×10 ¹⁷

Test Conditions:
HYBRAR™ 7125
Specific Inductive Capacity: Electrode indirect method (Vacancy mode)
Dielectric Breakdown Strength: JIS K-6911 Voltage Rising Rate 2kV/sec
Volume Resistivity: Measured 1min. after applying DC 500V (at 20°C)

Combustion Test

Combustion Gas		Amount Formed	Detection Limit
SOx(reduced to SO ₂)	(mg/g)	not detected	0.1
NOx(reduced to NO ₂)	(mg/g)	not detected	0.5
HCI	(mg/g)	not detected	0.1
HCN	(mg/g)	not detected	0.05
NH₃	(mg/g)	not detected	0.1
СО	(mg/g)	140	10
CO ₂	(mg/g)	350	10
Gross Calorific Value	(J/g)	45000	

Test Conditions: HYBRAR™ 7125 Combustion gas JIS K-7217 (Combustion condition A) Gross Calorific Value JIS M8814 Calorimeter

Solubility Data

Soluble	Partially Soluble	Insoluble
Petroleum Benzine	Ethyl Acetate	Methanol
Toluene	Methyl Ethyl Ketone	Ethanol
Hexane		Acetone
Cyclohexane		Water
Chloroform		Dimethyl Formamide
Carbon Tetrachloride		
Carbon Disulfide		
Tetrahydrofuran		
1		

Test Conditions: Test Conditions - HYBRAR™ 7125 Put 10wt% of polymer into each solvent and vibrate for two days at the room temperature. The solubility is judged by the appearance.

HYBRAR™ Applications ~Polymer Blends~

(1) Plastic/HYBRAR™ Blend

HYBRAR™ can be blended with various plastics to produce materials which exhibit excellent vibration damping properties. Some blends using HYBRAR™ 5127 and their physical properties are depicted below:

Polystyrene/HYBRAR™ Blend

				Te	sted by KURARAY CO.,L
	(wt %)	1	2	3	4
Formulation					
Polystyrene		100	90	85	80
HYBRAR™5127			10	15	20
Physical Properties					
Evaluation of Dampin	g Properties				
Tan δ Loss Factor	(0°C)	0.033	0.044	0.047	0.049
	(25°C)	0.035	0.051	0.075	0.115
	(40°C)	0.037	0.045	0.063	0.094
Loss Factor (Degree		0.016	0.023	0.040	0.068
Mechanical Properties					
Hardness	(Type-D)	83	80	76	74
Tensile Modulus	(MPa)	2600	2300	2200	1900
Tensile Strength	(MPa)	49	51	47	43
Elongation	(%)	13	18	21	17
Flexural Modulus	(MPa)	2600	2300	2100	1700
Flexural Strength	(MPa)	74	34	28	23

Conditions

Blended with Twin Screw Extruder at 200°C

Test samples molded with Injection Molder. (Cylinder at 200°C, Mold at 60°C)

Evaluation of Damping Properties:Tanδ measured with Rheovibron (Dynamic Viscoelastometer, Orientec) at 110Hz Loss Factor(Degree of Damping) measured by resonance method with a cantilever beam

The vibration damping behavior of the PS/5127 blend, when struck by a steel ball, is shown below.

(2) HYBRAR™ based filler compounds

Damping compounds can be produced from the combination of HYBRAR™ and inorganic fillers such as mica, graphite, calcium carbonate,etc.

(3) SEPTON™ and HYBRAR™ combination compound

HYBRAR[™] can be blended with olefins and/or SEPTON[™] to produce soft compounds which exhibit excellent vibration damping properties. Some compounds using HYBRAR[™] 5127 and their physical properties are depicted below:

			Teste	d by KURARAY CO.,LTD.
	(parts by weight)	1	2	3
Formulation				
SEPTON™ 4055		100	100	100
HYBRAR™5127			100	100
Process Oil		180	100	60
Polypropylene		50	40	40
Physical Properties				
Resilience	(%)	40	17	12
Hardness	(Type A)	48	51	61
Tensile Modulus	(MPa)	0.8	1	1.4
Tensile Strength	(MPa)	9.3	10.3	13.9
Elongation	(%)	990	850	800
Compression Set				
25℃×22h	(%)		15	17
70°C×22h	(%)	41		59
MFR (230°C, 21N)	(g/10min)	5	17	6

Mixing Condition: Twin Screw Extruder at 210℃

Molding Condition: Injection Molding (Cylinder at 210 $^{\circ}\! C$, Mold at 50 $^{\circ}\! C)$

Resilience: ISO 4662 Lupke Type Rebound Resilience Tester

=Hr/Ho x100 (Hr: Rebound Height, Ho: Fall Height)

Red: HYBRAR™ based compound Blue: Common rubber based compound

HYBRAR™ Applications

~PP / HYBRAR™ (Hydrogenated) Blends~

Hydrogenated HYBRAR™ grades (HYBRAR™ 7125 and HYBRAR™ 7311) exhibit excellent miscibility with polypropylene. Unlike flexible PVC, they offer good flexibility and mechanical properties without the need for plasticizers while being friendlier to the environment.

HYBRAR[™] 7311 has a lower styrene content and a lower glass transition temperature than HYBRAR[™] 7125. As a result, PP/7311 blends are more flexible at room temperature than PP/7125 blends and offer better impact properties at lower temperatures.

PP/7125, PP/7311 Blends

Tested by	KURARAY	CO.,LTD.
-----------	---------	----------

(part	1	2	3	4	5	6	7	
Formulation Polypropylene (Random) HYBRAR™7125 HYBRAR™7311		100	90 10	80 20	70 30	90 10	80 20	70 30
Physical Properties	(Type A)	98	98	96	98	94	96	94
Hardness	(Type D)	63	55	46	42	54	44	35
Young's Modulus Tensile Strength	(MPa)	490	480	250	140	380	140	90
	(MPa)	37	35	30	30	34	30	28
Elongation Impact strength	(%)	1400	1400	1400	1600	1400	1600	1700
Notched Izod at-20°C	(J/m)	30	32	36	38	45	320	860
Haze (1mm thick film)	(%)	52	49	30	19	52	33	27

Mono Layer (Cast Film)

Tested by KURARAY CO.,LTD.

(w	/t%)	1	1	2	2	;	3		4
Formulation Polypropylene (Random) HYBRAR™7125		90 10		85 15		80 20		70 30	
Young's Modulus (N	//Pa) //Pa) (%)	MD 38 240 1090	TD 35 230 1130	MD 35 200 1000	TD 38 220 1200	MD 37 140 1270	TD 36 150 1170	MD 38 110 1150	TD 30 100 1090
Optical Properties Haze	(%)	3.9		2.8		0.9		0	1.4

(Thickness=50 μ m)

Comparison of PP/ HYBRAR™ (Hydrogenated) blends and Flexible PVC

	PP / HYBRAR™ (Hydrogenated) Blend	Soft PVC
Halogen Free	0	×
Plasticizer Free	0	×
Low Specific Gravity	0	×
Transparency	0	0
Flexibility	0	0
Heat Resistance	0	0
Weather Resistance	0	0

(○Good ×Not Good)

Dynamic Viscoelastic Behavior for PP / HYBRAR™ 7125

In case of PP/HYBRARTM 7125=30/70 formulation (——), it shows very similar dynamic viscoelastic behavior to Soft PVC shown as above, and so it has very similar feeling to Soft PVC (——) such as unique slow-recovery property.

HYBRAR™ Applications ~Cured Foam~

Damping foams can be made with HYBRAR™ by using foaming and curing agents. An example is shown below.

Comparison data between conventional EVA foam and HYBRAR™ based foam

		Tested by KURARAY CO.,LTD.	
(pa	rts by weight)	1	2
Formulation			
EVA (VA Content: 19wt%)		100	50
HYBRAR™5127			50
Curing Agent		8.0	0.175
Foaming Agent		3	3
ZnO		2	2
Stearic Acid		1	1
TiO2		4	4
Physical Properties			
Specific Gravity		0.17	0.18
Hardness (ASTM D2240, TypeC, 14°C)		65	66
Compression Set	(%)	65	48
Resilience	(%)	40	19
Tensile Strength	(MPa)	2.1	2.1
Elongation	(%)	230	230

Mixing Condition: Kneader and Roll-mill at 100°C ~130°C

Curing Condition: Press Molding at 145°C for 60min. with 14.7 MPa pressure

KURARAY CO., LTD.

:Ote Center Bildg., 1-1-3 Otemachi, Chiyoda-Ku, Tokyo 100-8115 PHONE: +81-3-6701-1601, FACSIMILE: +81-3-6701-1645

KURARAY AMERICA, INC.

:11414 Choate Road, Pasadena, TX 77507

PHONE: +1-281-909-5850, FACSIMILE: +1-281-909-5851

KURARAY EUROPE GMBH

:Building F821, Hoechst Industrial Park, 65926 Frankfurt am Main PHONE: +49-69-305-35850, FACSIMILE: +49-69-305-35650

http://www.septon.info/en http://www.kuraray.co.jp/en